3.342 \(\int (e \cos (c+d x))^p (a+a \sin (c+d x))^m \, dx\)

Optimal. Leaf size=114 \[ -\frac{a 2^{m+\frac{p}{2}+\frac{1}{2}} (a \sin (c+d x)+a)^{m-1} (e \cos (c+d x))^{p+1} (\sin (c+d x)+1)^{\frac{1}{2} (-2 m-p+1)} \, _2F_1\left (\frac{1}{2} (-2 m-p+1),\frac{p+1}{2};\frac{p+3}{2};\frac{1}{2} (1-\sin (c+d x))\right )}{d e (p+1)} \]

[Out]

-((2^(1/2 + m + p/2)*a*(e*Cos[c + d*x])^(1 + p)*Hypergeometric2F1[(1 - 2*m - p)/2, (1 + p)/2, (3 + p)/2, (1 -
Sin[c + d*x])/2]*(1 + Sin[c + d*x])^((1 - 2*m - p)/2)*(a + a*Sin[c + d*x])^(-1 + m))/(d*e*(1 + p)))

________________________________________________________________________________________

Rubi [A]  time = 0.115, antiderivative size = 114, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {2689, 70, 69} \[ -\frac{a 2^{m+\frac{p}{2}+\frac{1}{2}} (a \sin (c+d x)+a)^{m-1} (e \cos (c+d x))^{p+1} (\sin (c+d x)+1)^{\frac{1}{2} (-2 m-p+1)} \, _2F_1\left (\frac{1}{2} (-2 m-p+1),\frac{p+1}{2};\frac{p+3}{2};\frac{1}{2} (1-\sin (c+d x))\right )}{d e (p+1)} \]

Antiderivative was successfully verified.

[In]

Int[(e*Cos[c + d*x])^p*(a + a*Sin[c + d*x])^m,x]

[Out]

-((2^(1/2 + m + p/2)*a*(e*Cos[c + d*x])^(1 + p)*Hypergeometric2F1[(1 - 2*m - p)/2, (1 + p)/2, (3 + p)/2, (1 -
Sin[c + d*x])/2]*(1 + Sin[c + d*x])^((1 - 2*m - p)/2)*(a + a*Sin[c + d*x])^(-1 + m))/(d*e*(1 + p)))

Rule 2689

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[(a^2*
(g*Cos[e + f*x])^(p + 1))/(f*g*(a + b*Sin[e + f*x])^((p + 1)/2)*(a - b*Sin[e + f*x])^((p + 1)/2)), Subst[Int[(
a + b*x)^(m + (p - 1)/2)*(a - b*x)^((p - 1)/2), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&
 EqQ[a^2 - b^2, 0] &&  !IntegerQ[m]

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*((b*(c + d*x))/(b*c - a*d))^FracPart[n]), Int[(a + b*x)^m*Simp[(b*c)/(b*c - a*d) + (b*d*x)/(b*c -
 a*d), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rubi steps

\begin{align*} \int (e \cos (c+d x))^p (a+a \sin (c+d x))^m \, dx &=\frac{\left (a^2 (e \cos (c+d x))^{1+p} (a-a \sin (c+d x))^{\frac{1}{2} (-1-p)} (a+a \sin (c+d x))^{\frac{1}{2} (-1-p)}\right ) \operatorname{Subst}\left (\int (a-a x)^{\frac{1}{2} (-1+p)} (a+a x)^{m+\frac{1}{2} (-1+p)} \, dx,x,\sin (c+d x)\right )}{d e}\\ &=\frac{\left (2^{-\frac{1}{2}+m+\frac{p}{2}} a^2 (e \cos (c+d x))^{1+p} (a-a \sin (c+d x))^{\frac{1}{2} (-1-p)} (a+a \sin (c+d x))^{-\frac{1}{2}+m+\frac{1}{2} (-1-p)+\frac{p}{2}} \left (\frac{a+a \sin (c+d x)}{a}\right )^{\frac{1}{2}-m-\frac{p}{2}}\right ) \operatorname{Subst}\left (\int \left (\frac{1}{2}+\frac{x}{2}\right )^{m+\frac{1}{2} (-1+p)} (a-a x)^{\frac{1}{2} (-1+p)} \, dx,x,\sin (c+d x)\right )}{d e}\\ &=-\frac{2^{\frac{1}{2}+m+\frac{p}{2}} a (e \cos (c+d x))^{1+p} \, _2F_1\left (\frac{1}{2} (1-2 m-p),\frac{1+p}{2};\frac{3+p}{2};\frac{1}{2} (1-\sin (c+d x))\right ) (1+\sin (c+d x))^{\frac{1}{2} (1-2 m-p)} (a+a \sin (c+d x))^{-1+m}}{d e (1+p)}\\ \end{align*}

Mathematica [A]  time = 0.18975, size = 112, normalized size = 0.98 \[ -\frac{2^{\frac{1}{2} (2 m+p+1)} \cos (c+d x) (a (\sin (c+d x)+1))^m (e \cos (c+d x))^p (\sin (c+d x)+1)^{\frac{1}{2} (-2 m-p-1)} \, _2F_1\left (\frac{1}{2} (-2 m-p+1),\frac{p+1}{2};\frac{p+3}{2};\frac{1}{2} (1-\sin (c+d x))\right )}{d (p+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*Cos[c + d*x])^p*(a + a*Sin[c + d*x])^m,x]

[Out]

-((2^((1 + 2*m + p)/2)*Cos[c + d*x]*(e*Cos[c + d*x])^p*Hypergeometric2F1[(1 - 2*m - p)/2, (1 + p)/2, (3 + p)/2
, (1 - Sin[c + d*x])/2]*(1 + Sin[c + d*x])^((-1 - 2*m - p)/2)*(a*(1 + Sin[c + d*x]))^m)/(d*(1 + p)))

________________________________________________________________________________________

Maple [F]  time = 0.882, size = 0, normalized size = 0. \begin{align*} \int \left ( e\cos \left ( dx+c \right ) \right ) ^{p} \left ( a+a\sin \left ( dx+c \right ) \right ) ^{m}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(d*x+c))^p*(a+a*sin(d*x+c))^m,x)

[Out]

int((e*cos(d*x+c))^p*(a+a*sin(d*x+c))^m,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (e \cos \left (d x + c\right )\right )^{p}{\left (a \sin \left (d x + c\right ) + a\right )}^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^p*(a+a*sin(d*x+c))^m,x, algorithm="maxima")

[Out]

integrate((e*cos(d*x + c))^p*(a*sin(d*x + c) + a)^m, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\left (e \cos \left (d x + c\right )\right )^{p}{\left (a \sin \left (d x + c\right ) + a\right )}^{m}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^p*(a+a*sin(d*x+c))^m,x, algorithm="fricas")

[Out]

integral((e*cos(d*x + c))^p*(a*sin(d*x + c) + a)^m, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a \left (\sin{\left (c + d x \right )} + 1\right )\right )^{m} \left (e \cos{\left (c + d x \right )}\right )^{p}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))**p*(a+a*sin(d*x+c))**m,x)

[Out]

Integral((a*(sin(c + d*x) + 1))**m*(e*cos(c + d*x))**p, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (e \cos \left (d x + c\right )\right )^{p}{\left (a \sin \left (d x + c\right ) + a\right )}^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^p*(a+a*sin(d*x+c))^m,x, algorithm="giac")

[Out]

integrate((e*cos(d*x + c))^p*(a*sin(d*x + c) + a)^m, x)